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We prove a sufficient condition for the termination of pursuit in nonlinear games, 

We indicate a class of games on a piane~forwhich this condition is satisfied, we 
introduce the notion of relative optimatity, and we consider an example. 

1, Let the motion of a vector z in an n-dimensional Euclidean space Ij,, be des- 

cribed by the vector differential equation 

3 = 1 (3’, IL, I?), EE lz? P, 2‘ *z Q il. 1) 

Here the function f (2, x, P) is defined and is continuous for all z, u, 2%; I’ and q 
are arbitrary compact subsets of the p- and q-dimensional Euclidean spaces I{, and 

P r’ , respectively. The control parameter II, corresponds to the pursuing (chasing) object 
and 7? to the pursued (escaping) object. Further, a certain terminal set M is specified 

in C . The game consists of the following: the pursuing object tries to lead out the 

pointl’z onto 191, while the pursued object, generally speaking, hinders this, The game 
is considered terminated when point z falls onto M. All this describes a differential 

pursuit game (cf. [ 11). 
Let the game start from a point z0 g M at t = 0. We say that the pursuit from 

point z. can be terminated in a finite time if there exists a number t (z~) > 0 such 

that under an arbitrary measurable variation 2, (t) of parameter ZI we can select a mea- 
surable variation IE (t) of parameter II such that the solution z (t) of the equation 

z’ = f (2, 77 (t), 7) (t)), 2 (0) - ‘0 (1.2) 

falls onto fil in a time not exceeding the number t (z,,); here, for finding the value 
77 (t) of parameter IZ at each instant t >, 0 we use only the current information: the 

values z (t) and ~7 (t) of vector z and of parameter P at this same instant t. In what 
follows we need a generalization of Filippov’s lemma 12, 37. We present it in the nec- 

essary form, 
Filippov’s lemma. If cp (t, 76) is a continuous n-vector-valued function of 

the arguments t E la, f3J, u = (ulr us, . . ., II,) E II, 11 is a compacturn in an 
r-dimensional Euclidean space, ?, (1) is a measurable n-vector-valued function defined 
on the interval [a, p j and cp (t, I]) 3 !/ (1), then there exists a measurable function 

rI (t). a < t 6 p, for which cp (t, 7~ (t)) = 71 (t) for almost all t E fz, fi!. i.e. 
the equation (f (t, u) == !/ (t) has a measurable solution. 

Let us state a generalization of this lemma, 

Lemma 1. If 9 (t, ZE, u) is a continuous n-vector-valued function of the argu- 

ments t rz [a, p1, II E rI,. 2’ E I&, II, and a, are compacta in s- and r-dimen- 

sional Euclidean spaces, respectively, ztO (t), y (t) are measurable functions defined on 

(2, fi] and II, (t, n,, u0 (1)) 3 J/ (t), then the equation $ (t, rc, Q (1)) = ?/ (t) 

26 
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has a measurable solution. 
Proof. For each t E [a, @] , by faR ft\ we denote the solution, smallest in the lexi- 

cographic sence, of the equation @ (t, %, z:. (t)) = y (t) f2, 33. By L&n’s theorem, for 

any E > 0 we can find a compact set u c [a, @I, fi - a - mes 0 < E, on which the 
functions z+, (t), u (t) are continuous. By arguing just the same way as in [Z, 31, we can 
show the measurability of I(,, (t) on ET. Because the number E is arbitrary, the function 

un (0 is also measurable on [a, 81, 

Theorem 1. Let the game be started from a point z,, z M at t = 0. If there 

exists an absolutely continuous function E (t), 0 < t < T (q,), for which: (1) E(O)- 
201 E (70) E M, a0 = T bo), (2) 6' (t) E f (E(t), P, v) for any v E Q for 
almost every t E [0, ~~1, then we can terminate the pursuit in time T (2") . 

Proof. lo, From Condition (2) of the theorem it follows that g’ (t) e f (F; (t), 
P, Q) for almost every t e [O, z,]. We denote the Cartesian direct product P x Q 
by R and the function f (g (t), U, v) by ‘p (t, w) , where ZL’ = (u, v). Obviously, 

the function ‘p (t, w) is continuous in t, w and the set II is compact in R, x R,. 
Consequently, all the conditions of Filippov’s lemma are satisfied. Therefore, there ex- 
ists a measurable function ujO (t), defined on the interval [O, ~~1, for which 

Obviously, the components ug (t), z+, (t) of the measurable function W, (t) also are 

measurable and f (g (t), u. (t), v. (t)) = ET (t) for almost all t E 10, ~~1. Hence, 
the function t (t) is a solution of Eq. (1.1) (with u = u. (t), v = v. (t)). 

2’. Now let v = v1 (t), 0 < t < a, , be an arbitrary measurable function with 
values from 0. We denote the function f (.$ (9, u, 8) by 21’ (t, z, v) . The func- 

tion q (t, u, v) is defined for all t E [O, x,,], u E P, u E Q, is continuous in t, 

u, 8, and 9 (6 P, 2tl 0)) e E’ (t) Y b virtue of Condition (2) of the theorem. Hence, 
all the hypotheses of Lemma 1 are satisfied. Therefore, there exists a measurable func- 

tion u1 (t), 0 < t < zo, for which 

f (g (& t&l (t), 271 (0) = 9 (6 7il (0, 81 (1)) = E- (f> (1.3) 

for almost every t. From (1.3) we see that the absolutely continuous function t (t) is 

a solution of Eq, (l.l)(with u = u1 (t), J,T -=: U, (t)). 

3*. Suppose that the pursued object chose an arbitrary measurable control U= G(t) 
whose value at every instant t > 0 becomes known to the pursuer. Then, from the 
value .Y (If he chooses the value u (t) of his own control parameter u at this same in- 
stant t so that 

Obviously, the solution z (t) of Eq. (1. l), corresponding to the controls u (t), v (t), co- 
incides with E (t): z (t) ZZG E (t) (see Sect.2). Therefore, z (0) == z. and 6 (TV) = 
z (x0) E M. The theorem is proved. 

2. Let us consider nonlinear games on a plane. We indicate conditions under which 
the game can be completed from the points of a certain region. Further. we prove the 
optimality of the pursuit time relative to the region (see below for the definition). 

Let the motion of vector z be described by the system 
. 

21 = 22, % * = g (2, u, v) CL11 
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Here u, v are scalar control parameters whose range of variation is P = v =-= i-1, 
il. The terminal set M L- (0). C onceming the function g (z, u, v> we assume that 
it is continuous in all arguments for all .z and for u E P, 21 E 9, is continuously dif- 
ferentiable in z i, ze for u == u = 1, u = ~1 = -1 and for all z. We assume further 
the fulfillment of the following conditions : 

1) No trajectory whatsoever of system (2.1) can go t5 infinity or c5me out from 

infinity within a finite time interval. 

2) Let ii = fl (z) zz g (2, 1, ‘i), fi --_ fs (Z) = g (2, -1, --I). For a11 z and 
for i -== 1, 2 , 

a> 

b) 

3) fl (Z) > fi (2) for all 2. 

4) fr (0) > 0 > /2 (0) 
5) For each fixed 2: the function g (z, u, V) reaches its maximum for II = 1 

and minimum for ZE m= 

g (2, --1, --I). 
-1 * F~thermore~ g, (2, 1, u) > g (z, 1, Tt), g (2, -1, 29 < 

Let us consider a controlled object described by the system 

Here the control parameter w can take values from the segment W = l---2, 11. For 

system (2.2) we consider the time-optimal problem of hitting on the origin of the plane 
R,. All the hypotheses of Theorem 3.32 of [4] are satisfied. In fact, by virtue of assump- 

tion (5) the set 6 (z, P, Q) Z) f (2. TV), i.e. any trajectory of system (2.2) serves simulta- 
neously as a trajectory of system (2.1) ; therefore, Condition A of Theorem 3.32 is satis- 

fied. Since / (;, 1) === .f, (if. j (z, --i? L f2 (31, Conditions C, D also are satisfied (see2)). 
Further, d/i&~ : ii - f_ > ti according to (3) and f (0, 1) = fi (0) > 0, f (0, -1) = 

fi (0) < 0, according to (4) ; hence conditions (3.73). (3.74) of [4] also are satisfied. 
Consequently, when Conditions (1) - (5) are satisfied, a region G (c R,) exists for the 
controlled object (2.2) from any point of which a motion to the origin is possible, which 
is optimal in region G . The synthesis of controls optimal in region G can be effected 

in the following manner. The switching line A consists of arcs oiL-, o,+, n == 1, 2, 

..a*, while the synthesizing function w (z) equals 1 below line ,rl and on arc a;’ 

and equals - 1 above line A and on arc ui-. 
Theorem 2. Let zO be an arbitrary point of region G, T (z,,) be the time in 

which the phase point goes from 2,) to the origin along an optimal trajectory of system 

(2.2). Then pursuit from point zO can be completed in time T (zo) . 
Proof. By zO (t) we denote the optimal trajectory of system (2.2) connecting point 

zO and the origin. System (2.2) is autonomous ; therefore, we can take it that zO (0) = 
cl, Then 5, (1’ (z,,)) .=. (1. Let us convince ourselves that the rrajectory ZO (t), 0 < 
t < T (2,) satisfies the hypotheses of Theorem 1. Obviously, Condition (1) is satisfied. 

Since zol(t) r zo2 (t), z’02 (t) = f (z,, (t), zoo (t)), where w. (t), 0 < t < T (%) 
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is the optimal control Ieading the phase point from zk to ihe origin along trajectory 
~a (t). to verify Condition (2) it is sufficient to show that f (z. (t), w. (t)) C g (z, (t), 

13, Q) for any zr and for almost every t. We have 

f (%I (0, wo (0) c [g (&I (0, --17 --1), 6 (% (r), 1, I)1 

On the other hand 

Hence / (z,, (t), w0 (t)) C g (z,, (t), p, v) for any u and for almost every t. Con- 

sequently, by virtue of Theorem 1 the pursuit from z0 can be terminated. 
The theorem from [4] cited above establishes the optimality of the trajectories only 

in region G, 1. e, they are optimal in comparison only with trajectories wholly located 

in G. Therefore, in the differential game described by system (2.1) we can consider 

the optimality of the pursuit time relative to region G. We introduce the precise defi- 

nition. 
Definition. Let D be some subset of R,, containing point zO. The number t (zO) 

is called the optimal pursuit time relative to Lr if: (1) the pursuit from point 10 can 

be completed in time t (a,) , (2) there exists a measurable control t.(t), O< t < t (z,), 
such that for any measurable control u (t), 0 < t 6 t (z,,), the solution z (l), f, \r 

t 6 t (20) of system (2.1)) corresponding to the controls ZL (t), 2‘ (t) and emerging 
from zs at t = 0, satisfies the conditions c (t) E L) for all t E [O, t (z,)] and 

z (t) # 0 for any t EI_ 10, t (z,,)). Obviously, if D = R,, then optimality as intro- 
duced above coincides with optimality in Pontriagin’s sense P]. 

Theorem 3. If Conditions (1) -(5) are satisfied, then the time T (z,,) is optimal 
relative to G for any point z0 E G . 

Proof. The possibility of completing the pursuit from an arbitrary point z0 E G 
in time T (z,,) was established in Theorem 2. It remains to prove the validity of the 

second part of the definition. Assume that the pursued object applies the control 

8 ft) = wg ft), 0 < t Q T @a), while the pursuing object applies an arbitrary con- 
trol ZE (t), 0 < t < T (zo). The trajectory z (t), 0 Q t < T (z,), corresponding 
to u (t), P (t) connects the points zO, z (T (~a)) and is located wholly in G (see the 

definition), To be specific let z0 be above A, for 0 < t ( t, let the trajectory z (t\ 

lie in a two-dimensional cell Xi, let it be a part of a one-dimensional Y of second 
kind for tt < t < t, , let it be a part of a two-dimensional cell z, for 1, < t < t3 , 
etc. [4], and, finally, for tk < t < T < T (50) let it hit into the origin on a cell of 
first kind. 

As is known [4], the function o (z) z - T (z), z E G, called the Bellman function, 
is continuously differentiable in the region G \ h and satisfies in it the Bellman equa- 

tion 
max ao & _I_ a0 (2) 
WEW r -ffz‘, w)j -=I 1 az, _ ’ azz 

~~ (4 z, _c am (2) 
- L 1 ~f(s, - 1) = 1, if c isabove :I a31 

(2.3) 

The function z (t), 0 Q t < t,, is absolutely continuous, while the function o (z) is 
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smooth in the region G \ ,\ , Therefore 153, their superposition (t) (2 (t)), o< r < tt 
is absolutely continuous, Hence, for almost all TV [O, t,] the derivative do (~~~~)~~~ 
exists and can be computed by the formula 

~ = a*31 (t) + v g (2 (t), u(t), - 1) 
do (z (9) 

dt (2.4) 

yaw let E > 0 be an arbitrary number, e ( ft. We consider (2.4) for 0 < f < 
tt - E. Since the function r3co (z (tf)! ii+ < 0 [4] for t e [O, t, - a] , according 

to (2.3) we have do (z (t))idt .< 1. Hence, o) (z ftr - a)) - o (Z (0)) 4 tt-. -F < 
tr. Hence, because F is arbitrary, we obtain rt > 0 (2 (1r)) - w (zO). Suppose now 
that z (t) lies in a one-dimensional cell of first kind for t E IT,, -c22]. Because of the 
special form of system (2.1) this is possible if and only if 

g (2 (t), II (t), ZL’,, (8)) =- f (2 (t), I), g (-- ff), % ft), WI (Q) = f (z (07 --I) 

Consequently, the phase point moves along trajectory z (8) at the same velocity with 
which it moves for system (2.2) along n from z (rr) to z (~a). Hence, tz - rt r-= 
0 (2 (TJ) - (1) (z (Tt)). 

It is known that if z (t) is a part of a two-dimensional or one.dimensional cell of 

first kind for T < t ( s , then .s - t >, o (Z (s)) - o (z (IT)). But in the given 
case the phase point z (t) can move for some time on a one-dimensional cell of first 
kind. It can be proved that if z (t) !z Y, ti :< t < t,, then t% - tt > 0 (L: (&)I - 
01 (5 (ti)). To do this it suffices to prove the validity of the Bellman equation on v, i. e. 

it is sufficient that [6]: (a) the optimal trajectories of system (2.2) should not only ap- 

proach (this follows from Conditions (1) -( 5)) but also depart from cell v at a nonzero 
angle, (b) the level lines of function w (-1 at points Y do not touch cell v+ 

Let us first prove the validity of condition (a), The optimal trajectories of system 

(2.2), moving on cell X :. approach a certain one-dimensional cell Y, at a nonzero angle 
[4]. Let zV be an arbitrary point of cell VI and z” (1) be an optimal trajectory of system 
(2.2) passing through it. Let (11 (A), 1 Lj 1 < e be the equation of cell Y, in the neigh- 
borhood of point z” and let q? (01 == zc. By zJ (t) we denote an optimal trajectory of 

system (2.2) passing through point fr (A) . Because system (2.2) is autonomous, we can 

take zJ (0) -= (p (4). [ .2 1 < E. The trajectory Z~ (1) intersects cell Y at some t := 0 (A) , 

o (A) < (I. As was proved in [4], the function 0 (3) depends smoothly on the parameter 

_\. By virtue of the smoothness of cell v, , the function CF (.I), ( A 1 < F is also smooth. 
We have (/ ‘(,A) = (f (0, q.’ (0, .Z : o (A) (here and further on o (il) denotes an infini- 
tesimal of order higher than the first relative to A). 3ut z& ((11 F= v (A), 7’ tiii = 
‘F (Of = a*. Consequently [4], P (0 (411 = z0 (0 (I)) -~ iJz (ii (A)) A + o (a). Here 6:: (t) 

denotes the solution of the variational system 

6-1’ = 6zz, dzs’ = (2.5) 

with initial condition CSZ (0) = q’(O). Sine: it is obvious that 6) (A) = 0 (0) -i- 0 (6) A + 

o (A),then 
z’ (0 (A)) = i * (o (0)) + [z” (0 (0)) 0’ (0) + 62 (0 (O))J A t 0 (A) (2.6) 

The point .z’ (0 (A)) belongs to cell v for all 1 A 1 < c . Therefore, by virtue of (2.6) 
the vector 

6z (fzl (0)) -;- .z’c (0 (0)) 6’ (6) (2.7) 
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is tangent to cell Y at the point Z* (8 (0)). We now prove that vector (2.7) is not col- 
linear with vector z” (8, (O)), i,e. the trajectory z” (8) departs from cetl v at a nonzero 
angle.Assume that 6~ (0 (0)) i- 2-O (3 (0)) 9’ (0) =ilz’“(8 (0)), h $10. It can be checked that 
the function 2” (t), 0 (0) < t Q 0 is a solution of system (2.5). Consequently, the func- 
tion 

62 (t) + Z’O (t) 0’ (O), 0 (0) < t < 9 

also is a solution of system (2.5). By virtue of the uniqueness theorem 

82 (f) + 2-O (t) 9’ (0) f l2.O (t) (2.8) 

When t = 0 , from (2.7) we have 

sz (0) -i- z .C (0) r)’ (0) -: I.;‘” (0) (2. ‘31 

But equality (2.9) is possible if and only if the vector 2” (0), i, e. the tangent vector to 

trajectory Z’ (f) at the instant t = 0, is collinear with the vector cp’ (0), i. e, the tan- 
gent vector to cell vt at point f”. We have arrived at a contradiction because, as was 
noted above, the trajectory Z’ (0 approaches v, at a nonzero angle. Thus, the trajectory 
z’ (t) departs from s, at a nonzero angle. Condition (a) is proved. 

We proceed to the proof of the condition (b). By 11, (0 we denote a solution of the 
adjoint system (4), corres~ndiRg to the optimal trajectory z” (t) and to the control ~,~(t). 

We assume that Z' (I) E Z,, 0 < t < T% and z” (2) E C,, tl < t < Q. As is known [43, 
the vector Ic, (0 = h1 grad (I) (2” (t)), I, > 0, for t E 10, ~~1, and the vector $ (t) = 
X, grad 0 (2’ (f)), h2>0, for t E (t,, tp) , i.e. at points of trajectory z” (t), lying in Z,, 
Z,, the vector J) (t) is directed orthogonally to the level line. By virtue of condition (a) the 
level line of 0 (2)~ w ( z” it)) is smooth at point z ’ isi) [S]. Now, from continuity considera- 

tions we conclude that 9 (zi) = h, grad o (2” (ti)). But [4] the second com~nent of vec- 
tor II, (TV) equals zero. Therefore, the tangent vector to the level line of o (z) := w (zc 

(TV)) at point z0 (x1) is directed parallely to the --,-axis. In [4] it was proved that cell v 

does not have vertical tangents. Hence, the level line of w (2) = w (zL (t,)) does not 

touch v at point ? (TV). Since i” (TJ ranges over the whole cell v, condition (b) is proved. 

We have T = (T - tk) + (tti - tl,-,) -+ . . . i- (I, - t,) + (t1 - 0) --b 
lo (z (T)) - 0 (2 (f*))l i- lm (2 (fk)) - w (2 (t,;_,)fl + . . . 
+ 10 (2 (tJ) - 0 (2 (Q)l + [w (2 (t&) - 6J (z (@)I -I-. * * 

= --0 (z (0)) = T (q) 
We have arrived at a contradiction because T < T (2") by assumption. The theorem 
is proved. 

3, Example. Let the game be described by the system [4] 

z’r = Z2’ z-Z = -&r - 262, + p11 - cil (3.1) 

Here p is a positive and 03, 8, u are nonnegative numbers, n > u, 6’ < OF, the sets 

P = 0 = l- 1,11. M= {O). Conditions(l)-(5)areeasily verified for(3.1). Asis 
known [4], the region G coincides with the whole plane of variables z~, t2. Hence, opti- 
mality relative to G for (3.1) turns into optimality in Pontriagin’s sense. 

Note. Example (3.1) relates to the class of linear one-type objects fl]. By using the 
extremal sighting method we can establish the possibility of completing the pursuit from 
any point when the pursuer has less information available (at each instant 1 > 0 he knows 
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only the value z (1) of the phase variable z). As a rule this situation is common in linear 
differential games [8, 91. 
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We consider the behavior of a closed-loop stationary controlled system when the 

forcing functions belong to a certain class of functions (the Bulgakov problem [1, 
2-J). We derive estimates for the modulus of the maximum value of the output and 
for the largest accumulation of system errors. 

1. Consider the system of equations 

C,,?/(n) + c&-l) + . . . + c,_g/” + ?J’ = k.E, (t) 

/J-l) (0) = . . 

(1.1) 

. = y (0) -= 0 

E, (t) = .I (t) - !/ (t) 

Equations ( 1. 1) describe the behavior of a closed-loop linear astatic automatic control 


